Tutti pazzi per il grafene

Un materiale ad altissima conduttività. Trasparente e superdenso. Sostituirà il silicio nei micro-computer. Una svolta

DI GIOVANNI SPATARO

A toccare con mano per la prima volta e con un semplice apparato sperimentale questo parente stretto della grafite sono stati Andre Geim e Konstantin Novoselov, un giorno del 2004, in uno dei laboratori dell’Universita di Manchester. Vincente sul tempo una gara con altri colleghi di tutto il mondo, i due hanno regalato al mondo il grafene, materiale costituito da atomi di carbonio legati a formare un reticolo di esagoni ripetuti su un unico piano dello spessore di un atomo, grazie a cui potremmo continuare a inseguire il sogno di microprocessori sempre più piccoli e potenti. E che ha regalato a loro il premio Nobel per la fisica del 2010.

Perché proprio il grafene? Perché a temperatura e pressione ambiente conduce elettricità più velocemente di qualsiasi altro materiale, e già questa caratteristica sarebbe sufficiente ad at-tirare l’attenzione di progettisti e produttori di microprocessori che vogliono abbandonare l’ormai esausta tecnologia del silicio per nuovi materiali con cui innovare i transistor attuali. Ma non è tutto. Il grafene è anche il miglior conduttore di calore conosciuto: è quasi completamente trasparente (assorbe circa il 2 per cento della luce che lo attraversa) e ha una densità così elevata da riuscire a bloccare il pas-saggio di piccolissimi atomi di elio. Come se non bastasse, ci sono anche le proprietà meccaniche: grazie al legame tra atomi di carbonio da cui è composto, il grafene è leggerissimo e allo stesso tempo estremamente flessibile e resistente, oltre cento volte più resis-tente dell’acciaio.

Tanto basta per generare una mi-riade di studi. Alimentati anche dai ricercatori italiani dell’Istituto di Nanoscienze del Cnr. Come spiega Elisa Molinari, professore all’Uni-versità di Modena e Reggio Emilia e direttrice del polo S3 di Modena

Meglio di un buco nero

Se la Ricerca Industriale è in fibrillazione per le opportunità di business che offre il grafene, quella di base non è da meno. La scoperta dei due scienziati dell’Università di Manchester ha aperto soluzioni inaspettate anche per esperimenti nel campo della fisica, perché il grafene è il primo materiale realmente bidimensionale, visto che il suo spessore è irrisorio rispetto alla sua lunghezza e larghezza. Come ha spiegato Andre Geim in un articolo pubblicato su “Le Scienze”, il mondo bidimensionale del grafene permetterà agli scienziati di studiare a fondo con strumenti che stanno sul tavolo di un laboratorio alcuni fenomeni che prima dell’arrivo del grafene si potevano analizzare solo nei buchi neri, quindì con potenti strumenti che scrutano lo spazio e sono in orbita intorno alla Terra, o in acceleratori di particelle, come il Lhc del Cern di Ginevra, un anello di 27 chilometri in cui particelle elementari e atomi sono accelerati a velocità vicine a quella della luce e poi fatti scontrare per studiare i segnali più intimi della materia. Il grafene non sostituirà questi strumenti sperimentali complessi e giganteschi, ma in alcuni casi sarà un’alternativa validissima.
dell’istituto: «Subito dopo la scoperta del grafene, sia a Modena che a Pisa abbia-
mo cominciato a occuparci anche gra-
zie alla collaborazione con alcuni tra i
principal centri attivi nel mondo».

Fino a oggi sono più di 30 gli studi sul
nuovo materiale pubblicati dai ricerca-
tori dell’Istituto di nanoscienze del Cnr
e altri sono prossimi alla pubblicazione.
Ma arrivare allo sviluppo di applicazio-
ni commerciali di tecnologie e dispositivi
al grafene non sarà affatto facile.
«L’ostacolo principale», spiega Molina-
ri, «è la produzione di grafene in grandi
quantità, con proprietà controllate e a
basso costo. Ci sono diverse strategie
possibili, ma ancora non sappiamo qua-
le sarà la vincente. E poi sarà critico ri-
solvere il problema della stabilità dei
materiali e dei dispositivi nel tempo».

Il fatto è che mentre ottenere polvere
di grafene in quantità industriali non è
poi tanto complicato, trasformare que-
sta polvere nei fogli necessari per le ap-
plicazioni è talmente complesso che,
come ha ammesso lo stesso Andre
Geim, probabilmente il grafene in for-
ma cristallina è uno di materiali più co-
stosi del pianeta. Oggi, come ha riporta-
to un articolo pubblicato da “Natu-
re Nanotechnology”, la stragrande
maggioranza della produzione di gra-
fone del mondo (1.5 tonnellate all’anno,
con prospettive di crescita fino a 200
tonnellate nei prossimi due anni) arri-
va da tre piccole aziende statunitensi -
Materials, Vorbeck Materials e XG
Sciences - che però non riescono a sod-
disfare la domanda. In campo, infatti,
sono scesi molti colossi dell’hi-tech che
chiedono materiale per testare possibili
applicazioni. Incoraggiati dal prolife-
rare del numero di brevetti che riguarda-
dano, a diverso titolo, questo materia-
le. Rachel M. Frezier, dell’Università
dell’Alabama, ha pubblicato su “Re-
cent Patent on Nanotechnology” un’anali-
si effettuata sulla banca dati dello
United States Trademark e Pa-
tent Office, l’ufficio brevetti statuni-
tense, e ha scoperto che fino al 2008
erano stati rilasciati 432 brevetti che
contenevano la parola “grafene” e ne
erano stati pubblicati altri 1.079.

Dal 2008 a oggi, dunque, l’attenzio-
ne sul materiale è andata progressiva-
mente aumentando, così come le appli-
cazioni. Nissan Motors, per esempio,
ha sviluppato un dispositivo che per-
metterebbe di immagazzinare grandi
quantità di idrogeno da sfruttare come
carburante in automobile con celle a
combustibile. Come? Il prin-
cipio è semplice: costruire
contenitori a base di grafene,
la cui bassissima permeabi-
lità permetterebbe di confina-
re in modo efficace l’idroge-
no, risolvendo quindi uno dei
principali problemi che assill
ano i progettisti di automo-
obili ibride, quelle cioè non al-
imentate esclusivamente con
carburanti fossili. La Prince-
ton University e il Depar-
tment of Energy, tra gli altri,
hanno esaminato un altro
campo di applicazione inte-
ressante: i materiali composi-
ti, in cui il grafene sarebbe il
comprimario, portando in
dote le sue straordinarie pro-
prietà meccaniche da unire
alle caratteristiche di altri
materiali. Una prospettiva
interessante soprattutto per
l’industria aerospaziale e ae-
oronautica.

Un’altra caratteristica del grafene, la
grandissima trasparenza, promette be-
ne per impieghi nella tecnologia del fo-
tovoltaico e per applicazioni più popo-
liari come i touch screen, dove può so-
stituire il composto a base di indio at-
tualmente usato, è che il problema di
essere fragile e costoso. Altre esempi:
Graphene Energy, spin off dell’Univer-
sità del Texas ad Austin, sta compien-
do ricerca nel campo degli accumula-
tori di carica, ovvero di dispositivi che
permettono di immagazzinare grandi
quantità di energia in modo molto più
efficiente rispetto alle prestazioni per-
messe dalle tecnologie attuali. In altre
parole, il grafene promette pile con ca-
pacità mai viste.

UN MILIARDO DI EURO: E’ L’IMPEGNO DELLA UE PER TROVARE NUOVE APPLICAZIONI DALL’ELETTRONICA AL FOTOVOLTAICO ALL’INDUSTRIA AUTOMOBILISTICA

Ritaglio stampa ad uso esclusivo del destinatario, non riproducibile.